Package: mBvs 1.92

mBvs: Bayesian Variable Selection Methods for Multivariate Data

Bayesian variable selection methods for data with multivariate responses and multiple covariates. The package contains implementations of multivariate Bayesian variable selection methods for continuous data (Lee et al., Biometrics, 2017 <doi:10.1111/biom.12557>) and zero-inflated count data (Lee et al., Biostatistics, 2020 <doi:10.1093/biostatistics/kxy067>).

Authors:Kyu Ha Lee, Mahlet G. Tadesse, Brent A. Coull, Jacqueline R. Starr

mBvs_1.92.tar.gz
mBvs_1.92.zip(r-4.5)mBvs_1.92.zip(r-4.4)mBvs_1.92.zip(r-4.3)
mBvs_1.92.tgz(r-4.5-x86_64)mBvs_1.92.tgz(r-4.5-arm64)mBvs_1.92.tgz(r-4.4-x86_64)mBvs_1.92.tgz(r-4.4-arm64)mBvs_1.92.tgz(r-4.3-x86_64)mBvs_1.92.tgz(r-4.3-arm64)
mBvs_1.92.tar.gz(r-4.5-noble)mBvs_1.92.tar.gz(r-4.4-noble)
mBvs_1.92.tgz(r-4.3-emscripten)
mBvs.pdf |mBvs.html
mBvs/json (API)

# Install 'mBvs' in R:
install.packages('mBvs', repos = c('https://kleest0.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • gsl– GNU Scientific Library (GSL)
Datasets:
  • simData_cont - A simulated data set containing multivariate normal responses and continuous covariates
  • simData_mzip - A simulated data set containing multivariate zero-inflated count responses and a continuous covariate

On CRAN:

Conda-Forge:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

gsl

1.00 score 4 scripts 285 downloads 4 exports 1 dependencies

Last updated 11 months agofrom:9589167444. Checks:11 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 10 2025
R-4.5-win-x86_64OKFeb 10 2025
R-4.5-mac-x86_64OKFeb 10 2025
R-4.5-mac-aarch64OKFeb 10 2025
R-4.5-linux-x86_64OKFeb 10 2025
R-4.4-win-x86_64OKFeb 10 2025
R-4.4-mac-x86_64OKFeb 10 2025
R-4.4-mac-aarch64OKFeb 10 2025
R-4.3-win-x86_64OKFeb 10 2025
R-4.3-mac-x86_64OKFeb 10 2025
R-4.3-mac-aarch64OKFeb 10 2025

Exports:initiate_startValuesmmzipBvsmvnBvsmzipBvs

Dependencies:mvtnorm